Minimal Valid Inequalities for Integer Constraints

نویسندگان

  • Valentin Borozan
  • Gérard Cornuéjols
چکیده

In this paper we consider a semi-infinite relaxation of mixed integer linear programs. We show that minimal valid inequalities for this relaxation correspond to maximal latticefree convex sets, and that they arise from nonnegative, piecewise linear, positively homogeneous, convex functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MILP models and valid inequalities for the two-machine permutation flowshop scheduling problem with minimal time lags

In this paper, we consider the problem of scheduling on two-machine permutation flowshop with minimal time lags between consecutive operations of each job. The aim is to find a feasible schedule that minimizes the total tardiness. This problem is known to be NP-hard in the strong sense. We propose two mixed-integer linear programming (MILP) models and two types of valid inequalities which aim t...

متن کامل

On Lifting Integer Variables in Minimal Inequalities

This paper contributes to the theory of cutting planes for mixed integer linear programs (MILPs). Minimal valid inequalities are well understood for a relaxation of an MILP in tableau form where all the nonbasic variables are continuous. In this paper we study lifting functions for the nonbasic integer variables starting from such minimal valid inequalities. We characterize precisely when the l...

متن کامل

Lifting for conic mixed-integer programming

Lifting is a procedure for deriving valid inequalities formixed-integer sets from valid inequalities for suitable restrictions of those sets. Lifting has been shown to be very effective in developing strong valid inequalities for linear integer programming and it has been successfully used to solve such problems with branch-and-cut algorithms. Here we generalize the theory of lifting to conic i...

متن کامل

On Valid Inequalities for Mixed Integer p-Order Cone Programming

We discuss two families of valid inequalities for linear mixed integer programming problems with cone constraints of arbitrary order, which arise in the context of stochastic optimization with downside risk measures. In particular, we extend the results of Atamtürk and Narayanan (Math. Program., 2010, 2011), who developed mixed integer rounding cuts and lifted cuts for mixed integer programming...

متن کامل

Capacitated Trees , Capacitated Routing , and Associated

We study the polyhedral structure of two related core combinatorial problems: the subtree cardinalityconstrained minimal spanning tree problem and the identical customer vehicle routing problem. For each of these problems, and for a forest relaxation of the minimal spanning tree problem, we introduce a number of new valid inequalities and specify conditions for ensuring when these inequalities ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Oper. Res.

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2009